
RESEARCH ARTICLE

Comparative analysis of the root and leaf

transcriptomes in Chelidonium majus L.

Helen Pourmazaheri1,2☯, Aboozar Soorni3☯, Bahram Baghban Kohnerouz1*, Nafiseh

Khosravi Dehaghi2*, Enayatollah Kalantar4, Mansoor Omidi5, Mohammad

Reza NaghaviID
5*

1 Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz,

Islamic Republic of Iran, 2 Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical

Sciences, Karaj, Islamic Republic of Iran, 3 Department of Biotechnology, College of Agriculture, Isfahan

University of Technology, Isfahan, Iran, 4 Department of Microbiology and Immunology, Faculty of Medicine,

Alborz University of Medical Science, Karaj, Islamic Republic of Iran, 5 Agronomy and Plant Breeding

Department, Agricultural & Natural Resources College, University of Tehran, Karaj, Islamic Republic of Iran

☯ These authors contributed equally to this work.

* bahramrouz@yahoo.com (BBK); khosravi@abzums.ac.ir (NKD); mnaghavi@ut.ac.ir (MRN)

Abstract

Chelidonium majus is a traditional medicinal plant, which commonly known as a rich

resource for the major benzylisoquinoline alkaloids (BIAs), including morphine, sanguinar-

ine, and berberine. To understand the biosynthesis of C. majus BIAs, we performed de novo

transcriptome sequencing of its leaf and root tissues using Illumina technology. Following

comprehensive evaluation of de novo transcriptome assemblies produced with five pro-

grams including Trinity, Bridger, BinPacker, IDBA-tran, and Velvet/Oases using a series of

k-mer sizes (from 25 to 91), BinPacker was found to produce the best assembly using a k-

mer of 25. This study reports the results of differential gene expression (DGE), functional

annotation, gene ontology (GO) analysis, classification of transcription factor (TF)s,

and SSR and miRNA discovery. Our DGE analysis identified 6,028 transcripts that were

up-regulated in the leaf, and 4,722 transcripts that were up-regulated in the root. Further

investigations showed that most of the genes involved in the BIA biosynthetic pathway are

significantly expressed in the root compared to the leaf. GO analysis showed that the pre-

dominant GO domain is “cellular component”, while TF analysis found bHLH to be the most

highly represented TF family. Our study further identified 10 SSRs, out of a total of 39,841,

that showed linkage to five unigenes encoding enzymes in the BIA pathway, and 10 con-

served miRNAs that were previously not detected in this plant. The comprehensive tran-

scriptome information presented herein provides a foundation for further explorations on

study of the molecular mechanisms of BIA synthesis in C. majus.

Introduction

Chelidonium majus L. is an herbaceous medicinal plant belonging to the botanical family

Papaveraceae. C. majus is widely distributed in Europe and Western Asia and also as an
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introduced species in Northern America. The species is commonly known as celandine,

greater celandine, celandine poppy, elon-wort, felon-wort, rock poppy, swallow-wort, and tet-

ter-wort. C. majus is highly toxic due to the presence of various secondary metabolites in the

roots and stems, but is used in both traditional and modern medicines [1].

Pharmacological properties ascribed to C. majus include anti-viral [2], anti-bacterial [3],

anti-fungal [4], anti-protozoal and radioprotective [5], anti-inflammatory [6], anti-alzheimer

[7], anti-cancer [8], hepatoprotective [9], and natriuretic and antidiuretic effects [10]. The

diverse array of secondary metabolites present in C. majus is responsible for its therapeutic

properties. Alkaloids are the most common group of secondary metabolites present in C.

majus. Chelidonine, berberine, sanguinarine, coptisine, chelerythrine, and protopine, are

among the various alkaloids synthesized by C. majus [11]. Flavonoids, saponins, vitamins (e.g.

vitamin A and C), mineral elements, sterols, and acids and their derivatives [12] are other sec-

ondary metabolites present in C. major as well.

Transcriptome sequencing can be effectively utilized to identify and characterize pathways

associated with the biosynthesis of secondary metabolites in plants [13–15], and enables the

exploration of gene sequence and expression levels in an organism that lacks genomic

resources [16–17]. A de novo transcriptome assembly, coupled with a liquid chromatography–

electrospray ionization-tandem mass spectrometry (LC–ESI-MS/MS) proteomic approach,

has been previously performed for C. majus to examine its protein composition, which showed

novel defense-related proteins characteristic of its latex [18]. Also, Hagel et al. (2015) estab-

lished an essential resource for the elucidation of benzylisoquinoline alkaloids (BIA) metabo-

lism from the transcriptomes of 20 BIA-accumulating plants, but the structural diversity of the

alkaloids and their biosynthetic pathways are not well studied in C. majus.
Considering the benefits of RNA sequencing technology, we used the root and leave tissues

as the basic materials to generate RNA-seq reads using Illumina HiSeq 2000 to obtain a better

understanding about genes involved in the BIA biosynthesis pathway We also mined the

assembly to identify expressed sequence tag simple sequence repeats (EST-SSRs) and miRNAs

that have not yet been characterized in C. majus.

Materials and methods

Plant materials, RNA extraction, and nucleotide sequencing

The Chelidonium majus tissues used in this study were collected from a high producer of cheli-

donine (Voucher number: IBRCP1006619), Mahmudabad-Amol, Mazandaran, Iran (Longi-

tude coordinates: 52 17’ 0.9", Latitude coordinates: 36 35’ 15.1 ") [19]. To collect samples,

plants were grown in the greenhouse facilities (28˚C day/20˚C night under natural light condi-

tions) of the Iranian Biological Resources Center (IBRC) in Alborz, Iran. The root and leaf tis-

sues were harvested from the plants, washed thoroughly with sterile water, frozen in liquid

nitrogen and immediately stored at -80˚C. Total RNA from the harvested plant materials was

extracted using TRIzol1 Reagent according to the manufacturer’s instructions (Invitrogen,

USA). RNA samples were sent to the Beijing Genomic Institute (BGI) for transcriptome

sequencing. Libraries were constructed using illumina TruSeq RNA sample preparation kit,

while sequencing was performed with the Illumina HiSeq 2000 platform to generate paired-

end (2×150 base) reads.

De Novo transcriptome assembly

We obtained a draft transcriptome from the raw RNA sequencing data using five popular

assembly programs including (1) Trinity v. 2.4.0 [16], (2) Velvet v.1.2.10 and Oases v.0.2.09

[20–21], (3) IDBA-tran [22], (4) Bridger [23], and (5) BinPacker [24]. Trinity was used with a
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fixed k-mer size of 25 as suggested by the authors. Oases-Velvet and IDBA-tran were used

with a series of k-mer sizes from 25 to 91 and with an increment of 2. For BinPacker and Brid-

ger we used two k-mer sizes (25 and 27). All tools were run with default settings and only

assembled transcripts longer than 200 bp were retained. Subsequently, the most basic metrics

for transcriptome assemblies including contig number, length distribution, assembly size, per-

centage of reads that could be mapped back to the transcriptome assembly (RMBT), and N50

were assessed and compared for all assemblies.

Gene expression levels and transcript annotation

The RNA-seq by Expectation Maximization (RSEM) package was used to estimate gene

expression levels based on the mapping of RNA-seq reads to the assembled transcriptome

[25]. To estimate the individual transcript abundances, the RNA-seq reads had first to be

aligned to the transcriptome assembly. After indexing the reference transcriptome, separately,

fastq files from the individual libraries of each sample were mapped to the final transcript set

using script align_and_estimate_abundance.pl. The program Bowtie was used to generate

alignments for each sample. Combining the read counts from all samples into a matrix was

performed using script abundance_estimates_to_matrix.pl [16, 25]. Finally, identification of

differentially expressed genes was carried out using run_DE_analysis.pl, which involves the

Bioconductor package EdgeR in the R statistical environment [26–27]. Transcripts with very

low read counts were filtered out across all libraries. Gene expression values were measured

in FPKM (fragments per kilobase of transcript per million reads mapped) [26,28] and were

used to make pairwise comparisons. Clustering analysis was performed on the differentially

expressed genes, with FDR and the logFC cutoff defined by the–P 1e-3 -C 2 parameters using

analyze_diff_expr.pl script.

Functional annotation of the de novo transcriptome was conducted using TransDecoder

v2.0.1 to predict open reading frames (ORFs) at least 100 amino acids long, and the Trinotate

pipeline v3.0.2 (http://trinotate.github.io/) was used to annotate the predicted ORFs using the

following programs: BLASTX v2.2.29 and BLASTP v2.2.29 to search against Swissprot-Uni-

prot database [29], Hmmer v.3.1b2 to identify protein domains (PFAM) [30–31], SignalP v.4.1

to predict the presence of signal peptides [32], Tmhmm v.2.0c for prediction of transmem-

brane helices in proteins [33], and Rnammer v.1.2 to predict ribosomal RNA [30]. All results

from the bioinformatics analyses performed above were imported into a Trinotate SQLite

database. To obtain Gene Ontology (GO) annotations, we used the Trinotate-integrated Uni-

ProtKB GO annotations and WEGO software [34] for GO functional classification.

TF identification and EST-SSR analysis

Homology searches against PlantTFDB using BLASTx with a cut-off E-value of 1e−5 were per-

formed in order to identify transcription factors [35]. The assembled sequences were scanned

to identify single sequence repeats (EST-SSRs) using the MIcroSAtellite Identification Tool

(MISA, http://pgrc.inpk-gatersleben.de/misa/) [36]. For this purpose, a FASTA file containing

all of the assembled sequences was used as the input file in MISA Perl script to screen for

EST-SSRs with motifs of 1 to 6 nucleotides and a minimum repeat number of 10, 6, 5, 5, 5, and

5, respectively. PCR primers were designed using Primer3 [37]. The parameters for designing

primers were as follows: PCR product size range of 100 to 300 bp; primer length of 18–25

nucleotides; annealing temperature between 55 and 62˚C with 57˚C as the optimum melting

temperature.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0215165 April 15, 2019 3 / 20

http://trinotate.github.io/
http://pgrc.inpk-gatersleben.de/misa/
https://doi.org/10.1371/journal.pone.0215165


In silico miRNA identification

To identify potential miRNAs in C. majus, transcripts and previously-known plant miRNAs

from the miRBase database [38] were initially clustered using CD-HIT-EST [39] with the fol-

lowing parameters: c = 1, n = 10, d = 0, and M = 16000. The clustered sequences were then

aligned against non-redundant miRNAs using BLASTn v 2.2.30 [29]. The obtained hits with

alignment length > = 20, e-value threshold� 0.001, and without mismatches and gaps were

considered for extracting the precursor sequences (pre-miRNA). A sliding window of about

400 nt from the region 200 nt upstream of the beginning of the mature miRNA to 200 nt

downstream of the miRNA from the filtered sequences was then used as a query in BLASTX

searches against the NCBI non-redundant protein database to remove protein coding

sequences. The secondary structures of the retained sequences were predicted using the web

server mfold (Zuker, 2003). Only sequences with the following criteria were considered as

potential miRNA precursors: (1) > = 20 nt mature miRNA sequence within one arm of the

hairpin (2) with higher negative minimal free energies and higher MFEIs [40], (3) no more

than six mismatches with the opposite miRNA, and (4) no loop or break in miRNA sequences.

In the last step, we used the web tool psRNA-target (http://bioinfo3.noble.org/psRNATarget/)

to predict the potential miRNA targets.

Orthogroup identification

We used OrthoFinder [41] with the default parameters, aligned sequences with MAFFT v

7.271 [42] and built trees with FastTreeMP v 2.1.8 [43], to identify conserved orthogroups for

eight species, including Argemone mexicana, Papaver bracteatum, Eschscholzia californica,

Glaucium flavum, Stylophorum diphyllum, Sanguinaria canadensis, and Corydalis cheilanthifo-
lia published previously along with C. majus. The corresponding transcriptome assemblies for

seven species were downloaded from www.phytometasyn.ca [44]. The predicted protein

sequences were obtained using TransDecoder v2.0.1 (http://transdecoder.sourceforge.net/).

The rooted species tree was drawn using Dendroscope v 3.5.9 [45].

Results and discussion

Short-read sequencing and de novo transcriptome assembly

A total of 188.98 million clean PE RNA-seq reads of 150 bp in length with quality scores of

>Q20 were obtained after sequencing root and leaf tissues on Illumina HiSeq 2000™ platform.

Subsequently all 188.98 million of the high quality were used for de novo assembly using differ-

ent packages.

The primary assembly statistics showed variable patterns of performance with the different

tools; for example, Trinity produced the largest number of contigs with the highest number of

bps, followed closely by Bridger (Table 1). The number of predicted transcripts is strongly

affected by the k-mer size [46]. With Velvet/Oases, the number of predicted transcripts

dropped from 325,276 with k-mer 25 to 94,116 with k-mer 91, similarly to previously reported

results [46–48]. However, using IDBA-tran, the number of contigs generally increased with

increasing k-mer size (168,305 contigs with k-mer 25, and 210,145 with k-mer 91). Some pre-

vious studies have indicated that N50, a metric commonly used in genome assembly, is not

suitable for transcriptome assembly, because longer N50 values may indicate a high level of

chimerism [6,49], although it has also been observed that larger N50s can reflect a higher qual-

ity assembly [50–51]. BinPacker gave the largest N50 compared to Trinity and Bridger. With

increased k-mer size, the N50 increased for all Velvet/Oases and IDBA-tran k-mer assemblies.

The total assembly length showed a similar trend N50 for IDBA-tran, while for Velvet/Oases

Transcriptomes assembly in Chelidonium majus
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with increasing k-mer size, the number of bps increased up to k = 45, at which point the num-

ber of bps declined. Across all assembly strategies performed using the different programs,

Trinity, Bridger, and BinPacker consistently produced similar percentages of paired-end reads

that mapped back to the relative assembly, ranging from 90.22 to 93.78%. Assemblies pro-

duced by Velvet/Oases had the lowest percentage of mapped reads (>70%). BinPacker was

faster, compared to Trinity and Bridger. These conflicting patterns show that the outputs of

the assembly programs can be quite variable.

Based on the assembly statistics, the assembly generated by BinPacker with k-mer 25, which

had the highest N50 value (1,585 bp), average transcript length, and RMBT percentage, whilst

keeping fewer number of contigs (232,701) and larger total assembly size (216.24 Mbp) as long

as possible was selected for downstream analysis.

Identification of differentially expressed genes (DEGs)

The identification of DEGs was performed by estimating individual transcript abundance by

mapping the cleaned reads back to the assembled transcripts with RSEM, and their expression

levels were represented as FPKM values. More than 93% of trimmed reads in the four libraries

could be mapped to the transcriptome assembly successfully, which indicates the quality of the

de novo transcriptome assembly. Digital abundance analysis identified 10,750 unique tran-

scripts as being significantly different between leaves and roots with two biological replicates

where the criteria for FDR was set to 0.001 and fold-change was set to 2^(2) or 4-fold; 6,028

transcripts were up-regulated in leaf and 4,722 transcripts in root. The fold-change ranged

from 2 to 14.

In order to identify the active pathways represented in the leaf and root transcriptome of C.

majus, the DEG sequences were used as queries in searches against the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway database. A total of 3,379 transcripts (31.43%), 1,828

transcripts being up-regulated in the leaf and 1,507 transcripts up-regulated in the root, were

assigned to 354 pathways. These canonical pathways were classified into six categories (Metab-

olism, Genetic Information Processing, Environmental Information Processing, Cellular

Processes, Organismal Systems, and Human Diseases) and 43 sub-categories. Among the path-

ways, “metabolic pathways” (with 347 transcripts), “biosynthesis of secondary metabolites”

(192 transcripts), and “ribosome” (101 transcripts) were the most abundant. Since C. majus
produces a major group of secondary metabolites (especially alkaloids), it was necessary to

identify the most active genes involved in the metabolic pathways.

Genes related to alkaloid biosynthesis pathways

The principal pathway for metabolism of morphinans (codeine and morphine), protoberber-

ines (berberine) and benzophenanthridines (sanguinarine) starts with the formation of (S)-

Table 1. Statistical summary of de novo transcriptome assemblies for three assembly programs.

Tools Trinity Bridger BinPacker

Kmer Size 25 25 27 25 27

Number of contigs 392,555 336,021 334,664 232,701 227,138

Total size (Mb) 220.67 207.94 204.34 216.24 208

Maximum length (bp) 16,238 37,322 25,856 35,898 34,163

Minimum length (bp) 224 201 201 200 200

Average length (bp) 562.15 618.84 610.58 929.27 915.75

N50 length (bp) 674 1,013 993 1,585 1,552

https://doi.org/10.1371/journal.pone.0215165.t001
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reticuline. Berberine and sanguinarine are found simultaneously in only a few species [52].

The biosynthesis of (S)-reticuline begins with the conversion of tyrosine to dopamine and

4-hydroxyphenylacetaldehyde (4HPAA) [53–54]. Tyrosine/dopa decarboxylase (TYDC),

which yields tyramine or dopamine, has been isolated from a range of plant species [55–56].

TYDC gene was found to be strongly expressed in root (Fig 1), displaying different expression

patterns in different organs. Previous studies have shown that TYDCs are regulated by multiple

factors and are differentially expressed in response to elicitor treatments [57–59].

Norcoclaurine synthase (NCS) yields (S)-norcoclaurine through the condensation of

4-HPAA and dopamine. The NCS gene sequence was initially isolated from meadow rue (Tha-
lictrum flavum) [54] and then from opium poppy [60]. In our study, the expression of NCS
was significantly higher in root than in leaves, which is consistent with the results of previous

studies, although NCS-specific mRNA has been detected in flower buds and germinating seeds

[61–62]. Coclaurine N-methyltransferase (CNMT), which is expressed in roots, stems, flower

buds, and at lower levels in leaves [63] is an N-methyltransferase which converts (S)-Coclaur-

ine to (S)-N-methylcoclaurine [64]. In this study, gene-specific transcripts of CNMT were

detected in both tissues. (S)-N-methylcoclaurine 30-hydroxylase (CYP80B1) is a P450 hydroxy-

lase [65]. Three transcripts related to CYP80B1 showed high levels of expression in rootManu-

script, which is consistent with previously published results [66]. We detected three, two, and

four genes in the sanguinarine, berberine, and morphine pathways, respectively. In the sangui-

narine pathway, the gene for tetrahydroprotoberberine cis-N-methyltransferase (TNMT),

which converts (S)-stylopine to (S)-cis-N-methylstylopine, showed higher expression levels

in leave as compared to root, but the methylstylopine hydroxylase (MSH) and protopine

6-hydroxylase (P6H) genes had higher expression levels in root. MSH and P6H both belong to

the P450 enzyme family [67]. Most previous studies showed that TNMT, MSH, and P6H are

highly expressed in root, with the lowest expression levels detected in leave, fruits, or bulb initi-

ation [68]. However, Liscombe and Facchini (2007) measured the highest levels of TNMT
activity in the stem and leaf tissues of opium poppy, with lower levels in roots and flower buds,

which is consistent with our results [69]. In the berberine pathway, genes for (S)-scoulerine-

9-O-methyltransferase (SMT) [70] and (S)-canadine synthase (CYP719A1) [71] were both up-

regulated in root, but of four genes detected in the morphine pathway, three, including those

for salutaridine reductase (SalR), salutaridinol 7-O-acetyltransferase (SalAT), and codeine O-

demethylase (CODM), were up-regulated in root while transcription of the codeinone reduc-

tase (COR) gene was up-regulated in leaf. COR appears twice in the codeine and morphine

pathway; (1) it catalyzes the NADPH-dependent reduction of codeinone to codeine [72], and

(2) it is involved in the conversion of morphinone to morphine [73].

Functional annotation and GO classification

Gene annotation is one of the most important parts of transcriptome analysis, because it

enables us to interpret the content of transcriptome assembly. A total of 97,275 (41.8%) and

196,640 sequences (84.5%) gave significant hits against the Swiss-Prot database using BLASTx

and BLASTp searches, respectively. Furthermore, 14,894 unique Pfam protein motifs were

assigned and 8,805 transcripts were predicted to encode proteins with signal peptides. Of the

transcripts that returned BLASTx hits, 110,757 were associated with a total of 853,310 Gene

Ontology (GO) terms. Of these annotated transcripts, 5,609 had only a single GO term. Fig 2

summarizes the percentage of genes belonging to the top 10 categories in the “biological pro-

cess”, “cellular component”, and “molecular function” GO domains. Among the three main

domains, “cellular component” was the most highly represented, and within this category

most of the genes belonged to the “cell” class, followed by the “cell part” and “intracellular”

Transcriptomes assembly in Chelidonium majus
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Fig 1. Schematic representation of the benzylisoquinoline alkaloid biosynthesis pathway and expression of the

genes for pathway enzymes in Chelidonium majus.

https://doi.org/10.1371/journal.pone.0215165.g001
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classes. In the case of the “biological process” domain, the most abundant categories were “cel-

lular process” and “metabolic process”, and for the “molecular function” domain, the predomi-

nant categories were “binding” and “catalytic activity”. The GO term abundance results are

similar to those from a large number of transcriptome studies that have been reported for

other non-model and medicinal plants, such as saffron [74], gardenia [75], safflower [76], and

chrysanthemum [77]; however, compared to a previous study on C. majus [18], the distribu-

tion of genes in the three main ontologies was different. The most noticeable difference was

observed in the distribution of genes in “molecular function” GO domain. Possible reasons for

the discrepancies between our study and that of Nawrot et al. (2016) could include variations

in the structure of the cDNA libraries and/or the number of sequences used to retrieve GO

terms [18].

Fig 2. GO classification of genes expressed in Chelidonium majus. The bar chart shows the percentage of genes (Y-axis) belonging to the top 10

categories (X-axis) in the “cellular component”, “biological process”, and “molecular function” GO domains.

https://doi.org/10.1371/journal.pone.0215165.g002
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Identification and analysis of transcription factor genes

Transcription factors (TFs) play multiple key roles in plants by controlling the synthesis of bio-

active components, especially secondary metabolism and regulation of gene expression

through DNA-binding and cis-acting elements [78–79]. Here, a total of 69,971 putative TF

encoding transcripts were identified and further classified into 64 different families in the C.

majus transcriptome. Among the transcription factor families, bHLH was the most highly rep-

resented, with 7,736 transcripts (11.06%), followed by NAC (4,992; 7.13%), MYB-related

(4,545; 6.50%), ERF (4,003; 5.72%), C2H2 (3,300; 4.72%), and WRKY (3,077; 4.40%) (Fig 3).

Previous studies have demonstrated that the bHLH TFs could play major roles not only in

the developmental processes including control of cell proliferation [80] and formation of tri-

chome and light signal transduction [81], but also in the regulation of the expression of many

genes which participate in the biosynthesis of plant secondary metabolites such as flavonoids

and alkaloids [82]. In addition to bHLH, other TF families such as WRKY, MYB, and C2H2

are involved in secondary metabolism pathways. Two transcription factors, CjWRKY1, a

WRKY-type TF [83] and CjbHLH1, a basic helix-loop-helix TF [84] have been identified in

the alkaloid pathway to independently regulate berberine biosynthesis. CjWRKY1 is the first

transcription factor which has been characterized to play a positive role in berberine synthesis

in Coptis japonica [83]. CjbHLH1 is a non-MYC2-type bHLH TF, and two homologs,

EcbHLH1-1 and EcbHLH1-2, that are associated with the regulation of sanguinarine synthesis,

have been identified in the California poppy, Eschscholiza californica [85]. The ERF subfamily,

which belongs to the AP2/ERF family, have only a single AP2/ERF domain, and are known to

be involved in dehydration or ethylene responses [86]. ERF189 and ERF221/ORC1 in N. taba-
cum and ORCA2 and ORCA3 in C. roseus are members of the AP2/ERF TF family that have

been identified as being involved in alkaloid biosynthesis [87]. MYB transcription factors con-

trol diverse biological processes such as the regulation of primary/secondary metabolism and

hormone syntheses [88–90], whereas NAC family members participate in regulating plant

growth and developmental processes [91–93].

EST-SSR frequency and distribution

EST-SSRs have been extensively used in the study of genetic variation, evolutionary relation-

ships, linkage mapping, and genotyping due to their abundance, high polymorphic informa-

tion content, good reproducibility, and relative ease of use. At present, there are no studies

addressing the genetic diversity and classification of C. majus germplasm resources based on

EST-SSR markers, because have not been identified so far. In this study, for the first time,

large-scale transcriptome sequencing was used to identify expressed sequence tag simple

sequence repeats (EST-SSR) markers. To develop new markers for C. majus, all of the 232,701

transcripts generated by BinPacker were screened to find potential microsatellite motifs using

the MISA search tool. Due to both sequencing and assembly errors, mononucleotide repeats

may not be reliable, so we excluded them from further analyses. A total of 39,841 EST-SSRs

(2–6 nt) were identified in 45,277 (19.45%) transcripts (Fig 4), and 15,293 sequences were

found to contain more than one EST-SSR motif. The dinucleotide repeat motifs were the most

abundant (21,887 or 54.94%), followed by trinucleotide repeats (17,180 or 43.12%), and only

540 (1.38%), 64 (0.16%), and 160 (0.40%) of the identified EST-SSRs harbored predominately

tetra-, penta-, and hexanucleotide repeat motifs respectively. Within EST-SSR data sets, dinu-

cleotide repeat frequencies are usually higher than trinucleotide repeat frequencies. This is

supported by studies on medicinal plants such as Andrographis paniculata [94], Ginkgo biloba
L. [95], Gleditsia sinensis [96], Crocus sativus [74], Boea clarkeana [97], Phyllanthus amarus
[98], and Cinnamomum longepaniculatum [99]. However, the tri-nucleotide repeats are more
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frequent than di-nucleotide repeats in some other medicinal plants such as Mucuna pruriens
[100] and Epimedium sagittatum [101]. These distribution frequencies vary with respect to the

different plant species, the employed datasets, and the tools and standards used for EST-SSR

searches and identification.

Among the dinucleotide repeat motifs, we found that AG/CT was the most common

(48.05%) in C. majus, and this is the case for plants in general [102]. The presence of CT repeat

sequences in 50-UTRs is probably related to reverse transcription and has a significant role in

gene regulation. Of the trinucleotide repeats, AAG/CTT was the most frequent motif (12.89%)

Fig 3. Percentages of Chelidoniummajus transcripts (Y-axis) representing the top transcription factor families (X-axis) identified in this study.

https://doi.org/10.1371/journal.pone.0215165.g003
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in C. majus, followed by ACC/GGT (6.94%) (Fig 5). The (AAG/CTT)n repeats and their com-

plements are the most common tri-nucleotide repeat motifs in plants [103]. We succeeded in

identifying several novel EST-SSRs which were linked to unigenes that putatively encode

enzymes involved in morphine and sanguinarine biosynthesis. Finally we designed high-qual-

ity primers to amplify these potential EST-SSR loci (Table 2). Our findings will enrich the

molecular marker resources and help spearhead molecular genetic research on C. majus.

Discovery of miRNAs

A high stringency filtering approach on BLAST results identified a total of 104 potential miR-

NAs belonging to 108 sequences that were retained for secondary structure analysis. After fil-

tering based on secondary structure, nine folded miRNA precursors were predicted from nine

different families for the first time in C. majus (Table 3). In this study, the identified precursors

Fig 4. Expressed sequence tag simple sequence repeatss (SSRs) identified in the Chelidonium majus transcriptome. Distribution of SSRs in

different length classes.

https://doi.org/10.1371/journal.pone.0215165.g004
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had high MFEI values (0.71–0.83) with an average of 0.76, which is higher than that of rRNAs

(0.59), tRNAs (0.64) or mRNAs (0.62–0.66) [40].

Most mature miRNAs are evolutionarily conserved between species within the plant king-

dom, some of which have a large number of potential targets. Of these, miR319 regulates tran-

scription factors belonging to the TCP family which regulate plant developmental processes

such as leaf morphogenesis in Arabidopsis [104]. miR396 is necessary for normal development

in Arabidopsis, and regulates the Growth-Regulating Factor (GRF) family of transcription fac-

tors. GRFs are known to control cell proliferation in Arabidopsis leaves [105]. miR159 has a

Fig 5. Expressed sequence tag simple sequence repeatss (SSRs) identified in the Chelidonium majus transcriptome. The y-axis indicates frequencies

of the 10 most abundant SSRs motifs. The x-axis indicates 10 groups of SSRs motifs.

https://doi.org/10.1371/journal.pone.0215165.g005
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very similar sequence to miR319 but regulates different genes [106]. miR828 appears to target

transcription factor genes for DNA binding domain-containing proteins such as CONSTANS-

like 5 related cluster protein and zinc finger protein-B box [107]. Most studies have shown that

the miR171 family negatively regulates (decreases) primary root elongation and shoot branch-

ing by targeting GRAS gene family members [108]. Auxin Response Factors (ARFs), proteins

that play important roles in plant growth and development, have been reported to be targets of

the miR167 family in Oryza sativa [109]. miR169 is mostly expressed in the roots and regulates

CCAAT motif-binding transcription factors [107].

Construction of orthogroups across multiple species of Papaveracea

To facilitate comparative studies and to demonstrate the utility of transcriptome assemblies

for phylogenetic analysis, candidate coding regions generated by TransDecoder from tran-

scriptome assemblies of seven species were compared with potential proteins based on ORF

Table 2. Identification of SSR motifs in putative morphine and sanguinarine biosynthesis genes.

ID SSR Forward Primer (5’-3’) Tm

(˚C)

size Reverse Primer (5’-3’) Tm

(˚C)

size PS

(bp)��

S-norcoclaurine(NCS) (AAG)

5

AAGAAACCTGCAGCAGAGGA 60.134 20 TCTTGTAGGTCTCGACGTTCTTC 59.936 23 157

S-norcoclaurine(NCS) (TA)8 CCTGAGGTGGGTGTCAAGAT 59.962 20 CGTGGTAGTAGAAGATCCAATTAAA 57.965 25 214

Salutaridinol 7-O-acetyltransferase(SalAT) (TCA)

5

CATCAGTGTCGGTGTTGTCC 60.005 20 TGGAGGAATTGGTGGGTAAA 60.162 20 189

Salutaridinol 7-O-acetyltransferase(SalAT) (ACA)

5

GCAGTTGCGCTTGAATATGA 59.983 20 GAAGACGACGATGATGACCA 59.637 20 227

(S)-tetrahydroprotoberberine(TNMT) (CT)8 CTTCCTCCCATCACCCACTA 59.92 20 CCTCTCCCATTGATGCCTAA 60.029 20 256

(S)-tetrahydroprotoberberine(TNMT) (GAC)

5

CGACGGAGGATGAGTTGATT 60.073 20 CCAGACGTTGTAGTCCGGTT 60.028 20 238

(S)-tetrahydroprotoberberine(TNMT) (GGT)

5

CCGGACTACAACGTCTGGAT 59.989 20 GGTTTTCTTTCTGCCGATGA 60.192 20 118

(S)-tetrahydroprotoberberine(TNMT) (AT)7 CACAATTAGGCCCACATCAA 59.395 20 GCCTTGCATGAATATGCTGA 59.799 20 203

Methyltetrahydroprotoberberine

14-monooxygenase (MSH)

(AT)6 ACACCAACCAAAGCAAAAGC 60.154 20 GGAGGTGCAAAGGTTGACAT 59.973 20 219

NADPH-dependent codeinone reductase

(COR)

(AG)8 TTCCCATTAGGCAACAATCC 59.762 20 TTGGCATCTCCCTACCTGAG 60.21 20 226

�� PS: PRODUCT1 size,

https://doi.org/10.1371/journal.pone.0215165.t002

Table 3. High-probability miRNAs proposed for Chelidoniummajus.

miRNA family miRNA ID Mature sequence Mismatch ΔG = -kcal/mol MFEI

mir477 mes-miR477h ACUCUCCCUCAAGGGCUUCAG 4 82.6 0.77

mir319 ath-miR319a UUGGACUGAAGGGAGCUCCCU 2 116.2 0.83

mir396 cca-miR396c UUCAAGAAAGCUGUGGGAAAA 1 117.3 0.77

mir159 pde-miR159 UUUGGUUUGAAGGGAGCUCUA 4 116.5 0.74

mir828 vvi-miR828a UCUUGCUCAAAUGAGUAUUCCA 3 102 0.71

mir171 ctr-miR171 UUGAGCCGCGUCAAUAUCUCC 1 125.80 0.73

mir167 ath-miR167d UGAAGCUGCCAGCAUGAUCUGG 2 105.60 0.71

mir4376 sly-miR4376 ACGCAGGAGAGAUGAUGCUGGA 5 109.6 0.81

mir169 gma-miR169d UGAGCCAAGGAUGACUUGCCGGU 4 98.1 0.77

MFEI: Minimal folding free energy index.

https://doi.org/10.1371/journal.pone.0215165.t003
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predictions in the C. majus transcriptome using OrthoFinder. The number of shared

orthogroups between each pair of species ranged from 10,925 (between Eschscholzia californica
and Papaver bracteatum) to 15,498 (between C. majus and Argemone mexicana). A total of

8,483 orthogroups were identified among all species present, and there were 59 single-gene

orthogroups in our species comparison. The family Papaveraceae is divided into four subfami-

lies based on critical details of the morphological traits [110]. In this study, with the exception

of Corydalis cheilanthifolia, which belongs to the Fumarioideae subfamily, all other species

belong to the Papaveroideae subfamily. The species tree strongly supports genetic relationship

between C. majus and S. diphyllum (Fig 6). This tree suggests that C. majus and S. diphyllum
are the most divergent from C. cheilanthifolia in the Fumarioideae subfamily.

Conclusions

In the current study, we generated and characterized a fully annotated and deep-sequencing

transcriptome assembly for leaves and root tissues of C. majus. This represents an important

initial resource that will enable further studies on the molecular mechanisms of bioactive alka-

loids biosynthesis, as well as for studies of the molecular genetics and functional genomics of

this important medicinal plant. Based on transcriptome assembly metrics, BinPacker was

found to be the best among all the assemblers used in this study. Generally, our analysis

revealed that most of the genes involved in the sanguinarine, berberine, and morphine path-

ways are broadly expressed in root. We observed that relatively few of these genes are up-regu-

lated in leaves. Our results also showed that the most frequent transcription factor families

Fig 6. Phylogenetic tree showing eight BIA-accumulating plant species from the concatenated orthogroups using OrthoFinder. The tree is drawn

to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree.

https://doi.org/10.1371/journal.pone.0215165.g006
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represented here are involved in regulating secondary metabolism pathways, especially those

for alkaloid biosynthesis. Development of a large number of EST-SSR markers and the design

of high-quality PCR primers for potential EST-SSR loci amplification in the C. majus tran-

scriptome will be useful for evaluating genetic diversity and also in marker-assisted breeding

in C. majus. Furthermore, our computational methods enabled the identification of a set of

potential miRNAs which were previously unknown for this plant.
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